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Interactions of Nanoparticles with media and cells

1: Change in redox state
Possible behavior of NP 2: coating of the NP

in culture media and cells 3: Evolution of the dispersion state
4: Solubilization of the NP
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we postulated that metallic NP should interfere with metal
homeostasis, which is closely related to oxidative stress
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Adapted from Herlin, Michaud-Soret, Fauquant, Armand and Carriere, (2013) BioFutur (347) 39-41



Interferences between Nanoparticles and metal homeostasis

Labile metallic nanoparticles : CuO, ZnO, Ag..

cellular model: hepatocytes (HepG2) because metals end up in liver

1) Characterization of the NP in the medium

2) Dissolution studies

3) Cell viability

4) Q-PCR on genes involved in redox and metal homeostasis in subtoxic conditions
5) Visualization, localization, quantification (TEM; uXRF; XAS; ICP-MS)

= Goal
Decipher the mechanisms of disruptions at the cellular and molecular levels

= Main result:

metallic NP interfere with metal homeostasis even in subtoxic
conditions

but not always using the same mechanisms



NP characterization solid/dispersion in medium by DLS, EM
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Hepatotoxicity of ZnO-NP, CuO-NP and Ag-NP

HepG2 cells treated with different metal nanoparticles for 24h
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Cellular responses induced by CuO-NP, ZnO-NP and Ag-NP

sub-toxic
conditions

HSPA6

HMOX

MET

GCLM

ZnT1

In all cases

Specificities:

MRNA fold increase after 6 h exposure

| e | AENO
100pM 50 uM 25 uM
435 994 553
34 46 34.5
362 539 30.5
12 13 -
6 9 -

- Met, GCLM, ZnT1 overexpression = Metal homeostasis control
- Weak oxidative stress response = HMOX only (not SOD or CAT)

HSP6: heat shock protein
HMOX: heme oxygenase
MET : Metallothionein
GCLM: in GSH synthesis
ZnT1: Zn exporter

= ZnO-NP same result than Zn salt

= CuO-NP more effect than Cu salt

-> Ag stronger expression for all targets
Very high overexpression for HSPA6--> protein folding problem 6



CuO-NP trigger disruption of Cu and Zn
homeostasis under sub-toxic conditions
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Cuillel et al (2014) Nanoscale, é: 1707
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Cellular zinc content measured by ICP-AES

after 6 h, 24 h and 48 h incubation with 90 uM Zn compounds for 24 h
followed by a 24 h recovery.
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protection by EDTA against Zn toxicity =2 Zn dissolution in the medium
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Chevallet et al (2016) Nanoscale, 8(43):18495-18506 , just published



TEM observation of ZnO-NP treated HepG2 sections

control ZnO-NP-FBS ZnO-NP-silane
90 uM, 6 h 90 uM, 6 h

M: mitochondria, N: nucleus, G: Golgi appaats, RE:endF-J'I
MLB: multilamellar body, A: autophagosome.
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ZnT2 upregulated and decrease mitochondrial transmembrane potential
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Suggesting a storage of zinc in mitochondria,

mitochondria alterations
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Sub-toxic doses of both ionic and nanoparticulate forms
of zinc induce zinc homeostasis disruption, mitochondria
alterations and increased autophagy

?
SR ROS? A 'V'EI ZnO-NP
[ ]
M autophagy O

X . I

EHES-. -

Wit Hepatocyte/ medium




Ag-NP Conclusion (as described in G. Veronesi talk )

- Ag-NP dissolve intracellularly in acidic vesicles nanoXRF on ID16B and TEM
citrate
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- Ag(l) forms complexes with thiol-containing biomolecules as AgS, (GSH) and AgS;
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Veronesi, Deniaud et al (2016) Nanoscale, ,8(38):17012-17021
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General conclusion :
mechanisms of disruptions by labile MeNPs in hepatocytes

7 G

HSPA6 GCLM

HMOX
Met o

Met : Metallothionein
ZnT, Zip : Zinc transporter
MTF : Metal regulatory transcription

factor
MRE : Metal response element

M Chevallet, G Veronesi, A Fuchs, E Mintz , | Michaud-Soret & A Deniaud (2016) BBA review submitted



Conclusions : from predictive toxicology to safer-by-design

Predictive toxicology

- Interferences between metal homeostasis and metallic NP
- Nano-effect due to endocytosis and dissolution (NP-CuO)
- no general correlation between NP and cytotoxicity

Metallothionein biomarker of metal ion exposure AgNP>ZnNp & CuONP
release of Zn(Il)=> MTF activation/translocation—=> Zn(ll) exporter Zntl
GSH major player

late induction of a moderate oxidative stress

Labile NP> higher inflammatory responses than other NP (literature)
— Redox and metal homeostasis disruption
- Biological chelators assisted-dissolution of metallic NP ( AgNP; I. Worms talk)

Perspectives : Safer-by-design approach
- Control of the dissolution by the coating
Serennde
- Bio-inspiration for eco-conception BIP =c i oo verearsh ond wavea

(posters Marchioni S3.2-P2 & Laisney S3.2- P4) | PAGE 14
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Study of ZnO-NP toxicity

Viability of HepG2 cells after a

24h incubation
equivalent Zn, pug/mL
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ZnO-NP Toxicity is equivalent to Zinc salt in Hepatocytes .



mMRNA expression of Zn- and redox-stress genes

after a 6 h incubation with Zn compounds at 90 uM (sub toxic dose)
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(*) Moos et al (2011) Metallomics 3(11), 1199-211



ZnO-NP Conclusions

Golgi apparatus

Nucleus

Mitochondrion

\+++
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Endocytosis ?

()
® /. ZnO-NP
(@)

Zinc

Canaliculus

Met : Metallothionein

ZnT, Zip : Zinc transporter

MTF : Metal regulatory
transcription factor

MRE : Metal response element

ZnO-NP toxicity seems to a great extent a direct consequence of zinc
dissolution and subsequent increase in intracellular and mitochondria

zinc concentrations.
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Nanomaterials in commercial products

CuO-NP ZnO-NP

Inkjet printed narrow - {
CuO tracks ]
110-160 pm i . p
T I | 2- hl
s
- £

Weir et al., Env.science & Tech., 2012
Wilson Center (USA) (2013)
www.nanotechproject.org/cpi

1000 to 5000 tonnes/year (2015)
Woodrow Wilson Institut

>4472 products containing Ag-NP

Increased exposure of environment & humans to NP

—=> mechanistic studies at the molecular and cellular
levels were essential for predictive toxicology
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Decrease mitochondrial transmembrane potential

after 24 h incubation with 90 uM Zn compounds
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0.001. 22
Chevallet et al (2016) Nanoscale, 8(43):18495-18506 , just published



AgNP intracellular dissolution (as described in G. Veronesi talk )

X-ray fluorescence microscopy on ID16B on whole cells coupled with cell section observed by TEM

Ag fluo lo
Optical & &

1. Control

2. AgNO, High sensitivity 2 allows Ag(l) detection

PVP citrate

Ag hot spots > Ag-NP
as well as diffuse signal = Ag(l) species

Larger hot spots with citrate - vesicles with
agglomerated Ag-NP

Veronesi, Deniaud et al (2016) Nanoscale, ,8(38):17012-17021




MRNA expression in HepG2 by quantitative PCR analysis

Normalized fold increase

after a 6 h incubation with Zn compounds at 90 uM.
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Protection by EDTA or Ca2+ against Zn toxicity

HepG2 pretreated for 15 min with 1 mM EDTA or 2 mM CaCl2 before
adding Zn compounds at the toxic dose of 250 uM for 24 h.
EDTA or CaCl2 treatment alone had no effect on viability of HepG2 cells.
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Chevallet et al (2016) Nanosca/e 8(43) 18495 18506, just publlshed



fold increase

C— control
—3 CucCl, 60 uM
@3 CuCl, 250 uM

2234 CuO-NP 60 uM
2223 CuO-NP 250 uV

Comparison with CuO-NP
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Influence of copper chelating proteins on the
dissolution of silver nanoparticles and their toxicity

In cellulo dissolution
LTy 4 ®
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Effect of bafilomycin A on Zn toxicity
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HepG2 cells were pretreated 1 h with 100 nM Baf A before adding Zn compounds for 24

h at subtoxic doses of 90 and 150 uM
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Dissolution of Ag-NP: silver release quantified by ICP-AES

Ag-NP coated citrate
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X-ray Absorption and fluorescence to understand

the fate and toxicity of NP-Ag

.
§ =9 L—#’g‘: k — A
Main results 5 46 :P;: AT
1) Correlation coordination number and d(Ag-S) for Ag-complex g " GSH] Ag(l)-Atoxt ﬁ
with bioinspired ligands and Ag-biomolecules containing s
1 to 20 thiols (GSH, Atox1, metallothioneins (MeT)) Ag(1) coordination number
- Macrophages

and
2) Simultaneous measurements in cellulo of dissolved Ag(l) and = | AgNanoparticles
remaining NP-Ag part

Ag(l) is mainly bound to intracellular GSH in macrophages and

also to MeT in hepatocytes (HepG2)

[ AgNP fraction:

4 \a 100 %
91 %

61 %
27 %
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3) Detection of dissolved Ag(l) in a unique cell thanks to the uXRF | 3)
on ID16B (exceptional sensitivity of few attograms /pixel of Ag in HepG2 Vesicles
70x70nm?) as a function of the coating -

Veronesi et al. Inorg. Chem. (2015), 54, 11688.

Veronesi et al. Nanoscale (2015), 7,7323 30
Veronesi , Deniaud et al, (2016) Nanoscale



X Ray Fluorescence elemental images highlighting the distribution of

(A) Zn and (B) Ag, and (C) their co-localization in a single hepatocyte (HepG2) exposed for
24 h to citrate-coated Ag-NP.

Images were acquired in the X-ray nanoprobe ID16B-NA of ESRF

Interestingly, both particulate (intense Ag hot spots) and ionic forms (diffuse signal) of
silver could be visualized with XRF.
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Does ZnO-NP interfere with redox equilibrium in Hepatocytes (HepG2) ?

Superoxide dismutase Catalase

(Cu-Zn or Mn SOD) Peroxidases Peroxiredoxines
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Study of Zn content in cells
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Very similar zinc accumulation between NPs and salt
The intra-cellular concentration of Zinc increased from 6h to 24h
No evidence of zinc release
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More copper is found in HepG2 exposed for 24h to CuO-NP than to CuCl, .



Studies of ZnO-NP, CuO-NP and Ag-NP

These particles can dissolve in water-based media and release ionic species

Cu ions release from CuO-NP

60 -
Cell culture media at pH 6.5

50 +
Cell culture media at pH 8
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% dissolution

20 4
- Water

10

40 50

time, h

pH decrease favors ion release from NP =2 similar mechanism in endo- and
lysosomal vesicles
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Cuillel et al (2014) Nanoscale, 6: 1707



